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SYMBOLS

€, Angle between Ve ana vehicle centerline.
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8, It
'é d29
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F(8) General damping function
&(6), General Forcing Function

&, Angle of Attack

q,m, Free stream Dynamic Pressure

4 , Instantaneous dynamic pressure

Vw, Free stream velocity

Vn:. Total velocity normal to body centerline

V.;J Total velocity parallel to body centerline

'\z, Total velocity

£, Density

S, Reference length

T, Mass moment of inertia about center of gravity
(,.,! Normal force coefficient

(A, Axial force coefficient

C:.) Lift force coefficient

Cp} Drag force coefficient

(s, Pitching moment coefficient about center of gravity

CM
ga

(“‘LU
Ce, Total force coefficient
t, CM/CR

-l:, Time



Sign Convention for force coefficients




Introduction:

In order to investigate the angular motion of an aerodynamic vehicle;
consideration should be given to the aerodynamic demping caused by the
vehicle's rotational rate. When vehicle orientation is important to
the success of a mission, as in the case of many abort configurations,
the aerodynamic damping can be of particular interest. With this need
to determine the the dynamic stability of many configurations, it is
evident that a theoretical method for calculating the aerodynemic damp-

ing derivatives, C,, + C. , would be of significant value. A technique

M
q

for predicting the damping characteristics of a vehicle from its static
force and moment data has been developed by the Analytical Aerédynamics
Section of the Advanced Spacecraft Technology Division, Aerodynamics
Branch. The equation of motion for an oscillating vehicle was rewritten
to include the effects that pitch rates have on the local dynamic pressure
and angle-of-attack. Utilizing this equation a computer program was able
to predict the experimental results of a particular vehicle. The devel-
opment, application, and results of this study will be presented.
Analysis:

An analogy of the single-degree-of-freedom of an aerodynamic vehicle can
be seen in the motion of a weight on a spring withurestriant by a dashpot.
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In this example G (x) is a forcing function, while F(x) is a damping
function. Displacemént, X, of the weight is dependent‘ on both G (x)
and F (x). .The differential equation describing the motion of the
weight ié:

(1) MX=g&Wm+ FOIx
For the case of an aerodynamic vehicle, the differential equation for
rotational motion is of the same form, with the substitution of corre-
sponding angular quantities for translational quantities.
That is:

(2) T &= &(0) +F(e)&
Here G (©) is the vehicle's pitching moment, and F (@) is a function of

the aerodynamic damping derivatives, Cm‘ o5 Cm . Assuming
q a

Si:z
Fle)= (C“‘? +C ) ______3-w
(3) 9 Md,

In general, forcing and damping functions are non-linear functions of e.
The damping function is a dominant factor in the dynamic stability char-
acteristics of the vehicle. Depending on the sign of F (8) the vehicle
can damp out its oscillatory motion (dynamically stable) or diverge

to the point of tmmbling (dynamically unstable).

Up to the present, mathematical approaches to equation (2) have proven
futile. 1In many of the theoretical approaches, problems can be encoun-
tered with CN is zero and/or CA does not act along the centerline of

the vehicle. The method discussed in this paper circumvents these prob-
lems by introducting a resultant force coefficient, Cq The technique is
applicable to non-symmetrical and symmetrical and symmetrical off-set
center of gravity type vehicles. Attention will be on the damping

caused by change in angle of attack and dynamic pressure due to angular

£



pitch velocity.

In order to account for the damping of the total vehicle, it is neces-
ary to picture the configuraton..as the sum of its differential elements.
Since obtaining aerodynamic coefficients as continuous functions of body
length is diffieult, this approach proves unrealistic. Dividing the
body into the major components that contribute to the total aerodynamics
is a reasonable compromise. Because the damping due to each of these
components is calculated in exactly the same manner, the following
derivation will be based upon determining the damping for one of these
components. The total damping of the vehicle is then the sum of the
damping contributions of each individual component.

Damping due to one compoment:
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First, some attention will be paid to the total force coefficient.



M
Ce= NG2:¢* = N+ & and represents the total force

oﬁ the component.
Knowing that the pitching moment is caused by a single force times
some lever arm, the (« can be defined as follows:

Ca= (5)

o= CM/CQ
The intersection of the lever arm, F-and the total force's line of action,
is the location of resultant aerodynamics on the component and is the
logical point to examine the changes in angle-of-attack and dynamic pres-
sure due to pitch velocity.

The damping derivatives are defined as follows:

= 2 €mas0 o=z,
26 .. SD*

Since the only quantities in the above equation that change with angular

velocity are C awo q_'ﬁ

Coag+ Cay= 23 | 2V
°& 4.D

q

Here note is made of the fact that the pitching moment coefficient is an

implicit function of &,so that:
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Now the changes in angle of attack and dynamic pressure with respect
to © must be established. Observing that the rotation of © causes
and induced velocity, &~ (See figure 2), the angle-of-attack and

dynamic pressure can be defined as functions of & .
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96
The angle of attack can be defined as the arctan of the ratio of
net velocity in the normal direction to the net velocity in the

axial direction.

-1
= TA N
Va
Since the resultant induced velocity vector, &r, lies along the

same line of action as the total force:
V2 Ve 5N - &1+ C"’/{..z
\/n 2 Voo €058 = e CA/C;_
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Noticing that
Ce= Cn f"s,g“ Ca s5mB  gng that the denominator is
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Substitution of equations 5, 6, and 7 into equation 4 yields
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Since the last term is usually small, it is reasonably safe to neglect it.
Then:
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Since this is the Cm + Cm- for-one component of the vehicle, the total
q a
damping is:

Cogt G N _ZCu, Com B
c.\.uc,‘ e =T M 91



6

The more components that the vehicle is divided into, the more accurate
the damping values obtained. For the ideal case of continuous aero-

dynamics force coefficients as a function of body length, the intergal

Cl*’l‘.i."‘ (M,{_"‘ - f‘-“ [ Cm Cong C'—] S'ﬁl C"“ZCD
Cuz""CA Cs.a +C

can be applied. But then more detailed static force data are needed .

equations:

A compromise has to be reached as to the reasonable number of components.
An example of component division is the Apollo Launch Escape Vehicle
(LEV) with canards. In the ¢ase of the Apollo LEV with canards, the
vehicle was divided into three components: Command Module, escape
rocket and tower, and canards. From the static data of these components

the damping was obtained by the following equation:

(»1 "-(m':) CM‘-‘}*G'“‘&) * (Cug+ Ca + (Gag+ Cu

( £ ‘\T ( Coarrtan ( % d) RociceT ( % aé')Cst'u.nam.uﬁ_s
»-';Ov:.u: £ rowd iy

Figure L shows the demping derivatives calculated from the above

summation equation. As a comparison, thedfﬁ4+(mg_obtained by considering

the body as one component isghoyn in figure 4. As can be seen, the

damping of the LEV canards taken as whole is less than that obtained

from the component approach. Figure 3 shows the pitching moment coefficient

for the total LEV with canards. It should be noted that the experimental
static data covered the range from -50 to + 130 degrees angle-of-attack.
The data for the remainder of the angle-of-attack range was faired in,
including the trim region. In addition, the date were obtained by use of
two different scale models: A 1/10-scale model tested in the Ames Unitary
Plan Wind Tunnel and & 1/20-scale modle tested in the Jet Propulsion

Laboratory's (JPL) 20 inch supersonic wind tunnel. These figures must be

considered in evaluating the results of the theory.



In figure 5 is seen the actual angle-of-attack time history of the LEV
canards obtained on the JPL AFD-1 dynamic stability test and the angle-

of-sttack time history calculated using the CM and CM + CM values
a Q

shown in figures % and . TFor the larger oscillation amplitues there is
close agreement, but as the amplitude decreases the two curves show less
agreement. This is in the region where experimental data were not
available.

In studying other configurations, it was seen that this theory has the
capability of predicting both stable and unstable damping.

FPurther investigation of the theory is continuing in the Analytical Aero-

dynamics Section.
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